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Abstract

We present magnetotransport data on the ferrimagnet GdMn6Sn6. From the temperature de-

pendent data we are able to extract a large instrinsic contribution to the anomalous Hall effect

σintxz ∼ 32 Ω−1cm−1 and σintxy ∼ 223 Ω−1cm−1, which is comparable to values found in other systems

also containing kagome nets of transition metals. From our transport anisotropy, as well as our

density functional theory calculations, we argue that the system is electronically best described as a

three dimensional system. Thus, we show that reduced dimensionality is not a strong requirement

for obtaining large Berry phase contributions to transport properties. In addition, the coexistence

of rare-earth and transition metal magnetism makes the hexagonal MgFe6Ge6 structure type a

promising system to tune the electronic and magnetic properties in future studies.
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Introduction The 2D kagome lattice is the marquee system of magnetic frustration

[1–3]. This frustration can in principle lead to non-collinear magnetic structures and even

novel spin-liquid states. The 2D kagome lattice has also served as the prime model sys-

tem to understand how strong Berry curvature can lead to a large intrinsic anomalous Hall

conductivity (AHC) in non-collinear magnets [4–7]. Motivated by this body of research, ex-

perimental studies have revealed large intrinsic contributions to the AHC in layered kagome

lattice systems with both antiferromagnetic and ferromagnetic ordering, such as Mn3Sn,

Co3Sn2S2, and others [8–14]. Perhaps, for ease of comparison with theoretical calculations,

it is sometimes argued that the quasi-2D nature of the electronic structure is responsible

for the large magnitude of the intrinsic AHC, even though the large ordering temperature

is necessarily a reflection of the interlayer magnetic coupling.

Here we illustrate that the layered kagome lattice system GdMn6Sn6 also possesses a

large intrinsic AHC, although the electronic structure is three dimensional. Fig. 1 (a)

shows the crystal structure of GdMn6Sn6. It has a hexagonal structure with space group

P6/mmm (No. 191), which consists of kagome layers of Mn atoms sandwiched by Sn and

Gd atoms. The lattice parameters a and c are 0.552 and 0.902 nm, respectively. The system

is a collinear ferrimagnet with Tc ∼ 440 K [15]. The magnetic moments lie in the ab-plane

(easy plane), with collinear but antiparallel Mn and Gd moments.

Methods Single crystals of GdMn6Sn6 were grown from Sn flux, described in Ref. [16].

The starting elements were placed in an alumina crucible in the ratio Gd:Mn:Sn=1:6:20 and

sealed in an evacuated silica ampoule. The ampoule was heated to 1100 ◦C, held at 1100 ◦C

for 6 hrs., then cooled slowly at 3 ◦C/hr. to 550 ◦C, at which point the excess Sn flux was

removed using a centrifuge. The orientation of the resulting hexagonal GdMn6Sn6 plates was

determined via Laue diffraction. Spin-polarized density functional theory (DFT) calculations

of the electronic structure were performed with the WIEN2K code using the PBE functional

under the generalized gradient approximation and spin-orbit coupling included via a second

variational step [17, 18]. The number of basis functions were set using a value of RKmax

= 8 and a k-mesh of 4,000 points in the Brillouin zone.

Results As shown in the temperature dependence of the resistivity in Fig. 1 (b), both

ρxx and ρzz have high residual resistivity ratios (RRR) R(300 K)/R(2K) of more than 60,

reflecting good metallic behavior. The resistivity anisotropy ρzz/ρxx stays within a range of

2.2 to 4.2, suggesting that the electronic properties are more 3D-like than 2D-like. This ob-
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FIG. 1. (a) Crystal structure of GdMn6Sn6. (b) In-plane (red) and out-of-plane (blue) resis-

tivity versus temperature. (c) Individual plots of the seven Fermi surface sheets found by DFT

calculations in the magnetically ordered state.

servation is further consistent with the electronic structure calculations. The Fermi surfaces

obtained by the DFT calculations are shown in Fig. 1 (c). In the calculation, a ferrimagnetic

solution is found with 7.1 µB Gd moments antialligned with 2.4 µB Mn moments. Within the

DFT calculation the size of the atomic moments are defined as the spin density within the

muffin-tin radii, of 1.32 Å for Gd and 1.31 Å for Mn. The remaining spin polarization that

occurs within the Sn muffin-tin radii as well as in the interstitial space of the unit cell is 1.2

µB yielding a total moment 6.1 µB/f.u. in perfect agreement with the experimental result

of 6.1 µB/f.u. [16]. There are seven bands (No. 177-183) crossing the Fermi level. Among

them five Fermi surfaces (177-179, 182-183) are 3D-like while only two of them (180-181)
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have some quasi-2D character. Combining the small resistivity anisotropy with the Fermi

surface calculation, in spite of 2D-kagome nets, the electrical properties of the system are

dominantly governed by a 3D electronic structure.

To evaluate the Berry curvature in this 3D layered kagome system, we first focus on the

transverse resistivity response ρxz with the magnetic field applied parallel to the y-axis (easy

plane). As shown in Fig. 2 (a), at high temperatures, ρxz is quickly saturated with small

fields (B < 0.2 T), reflecting the easy-plane magnetization behavior shown in the previous

study [16], consistent with our own magnetization data (not shown). At low temperatures

(T < 50 K), on the other hand, the term that is proportional to the magnetization is

hardly seen and ρxz is dominated by the ordinary Hall component. To further elucidate

the intrinsic contribution in ρxz, we calculate the anomalous Hall conductivity as shown in

Fig. 2 (b). Interestingly, the magnitude of the step at around zero field in σxz converges

to one value above T = 50 K. This fact indicates that the anomalous Hall conductivity

is dominated by the intrinsic contribution in this temperature regime. Since the intrinsic

AHC is independent of the electron scattering rate and the extrinsic component is not, the

contributions to σxz = −ρxz
ρxxρzz+ρ2xz

can be described as

σxz = σNxz + σextxz + σintxz (1)

where σNxz is the ordinary Hall conductivity, σextxz is an anomalous component, which can

arise from skew scattering or the side-jump mechanism, and σintxz is an intrinsic component

arising from the Berry curvature of the electronic structure. The first two terms depend

strongly on the scattering rate, while the latter is independent of it. From the resistivity

shown in Fig. 1 (b) we can infer that the scattering rate is highly temperature dependent.

Consequently, the lack of temperature dependence in σxz above 50 K, reflects the dominance

of the intrinsic Berry curvature derived σintxz contribution.

To extract the amplitude of the intrinsic component, the AHC versus the longitudinal

conductivity at B = 0.2 T is shown in Fig. 2 (c). Since B = 0.2 T is high enough to

saturate the anomalous Hall component but low enough for the ordinary Hall component to

be negligible, we can assume that the transverse response is dominated by the anomalous

Hall contribution. To separate the intrinsic contribution to the AHC from the extrinsic one,

we use the equation:
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σAHExz = σintxz + ασxxσzz (2)

where α represents the extrinsic component, which is scattering-rate and thereby conductivity-

dependent [10, 19].

From eq. 2, σintxz can be obtained as σxxσzz → 0 at moderately high temperatures.

The down turn of σxz at the highest temperatures is a consequence of the vanishing Berry

curvature associated with suppressing the ferromagnetic component of the magnetization

to zero as the Curie temperature is approached, and should be ignored. In our case, both

σxz and σxy (shown below) are approximately temperature-independent. Thus we set α=0

and fit the high temperature data of the hall conductivity to a constant (red dashed line in

Fig.2c). The resulting σintxz = 32 ± 2 Ω−1cm−1 corresponds to 0.073 e2/ha, where e, h and

a are electron charge, the Plank constant, and the lattice parameter, respectively.

Next, the Hall response with the magnetic field applied parallel to the c-axis (hard axis)

is shown in Fig. 3 (a). At low temperatures ρxy is almost linear with the magnetic field

up to B = 6 T, at which point the magnetization becomes saturated. This behavior is

consistent with the magnetization curve[16]. Above the saturation field, the slope of the

Hall signal is almost constant, reflecting the ordinary Hall signal. Since the saturation field

is much higher than that with B ‖ a, the ordinary Hall signal is no longer negligible and it

is necessary to account for it to obtain the anomalous Hall contribution. At T = 50 K we

estimate the ordinary Hall coefficient RH = 0.11 µΩcm/T, which corresponds to a carrier

density n of 5.7 × 1021 /cm3. We then obtain the anomalous Hall component by subtracting

the ordinary Hall component. The resulting σAHExy is shown in Fig. 3 (b). Similar to σAHExz ,

the saturated value of σAHExy is almost constant, indicating that the intrinsic contribution

dominates the extrinsic anomalous Hall effect. With the same analysis performed for σxz

above, we estimate the intrinsic anomalous Hall component σintxy ∼ 223 ± 2 Ω−1cm−1. This

corresponds to 0.54 e2/hc, where c is the lattice constant. Since a unit cell contains two

kagome layers, this contribution is reduced to 0.27 e2/h per single kagome layer.

Discussion

A 2D-electron gas can possess a large and quantized Hall response in units of e2/h [20].

Although no longer quantized, one may anticipate that a 3D material may possess an en-

hanced Berry curvature contribution to the Hall conductivity in systems where the electronic

structure remains quasi 2D. Here, we have demonstrated that GdMn6Sn6 possesses a large
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intrinsic contribution to the Hall conductivity. In addition, both Fermi surface calculations

and resistivity anisotropy indicate the three-dimensional electronic structure in this system.

The observed intrinsic AHC of 223 Ω−1 cm−1 for GdMn6Sn6, however, is comparable to that

for Fe3Sn2, which is attributed to reduced dimensionality [10]. Note, pure elemental iron

with a cubic crystal structure also shows a large intrinsic AHC greater than 1000 Ω−1 cm−1

[21]. This illustrates that a quasi-2D electronic structure is not a prerequisite for generating

large Berry curvature effects that can be easily manipulated, for instance, by small magnetic

fields.

GdMn6Sn6 is just one member of a large family of RT6X6, where R is a rare-earth, T

is a transition metal, and X is typically either Sn or Ge. For RMn6Sn6 compounds, the

system orders with an antiferromagnetic spiral for light or heavy rare-earths (Sc,Y,Eu,Lu),

and for moderate rare-earths (Gd-Ho), a ferrimagnetic ground state is found [15, 22, 23].

Interestingly, for YMn6Sn6 a field polarized state could be achieved at ∼ 13 T, which is

similar to our case where the Mn moments are fully polarized [24]. The AHC found in

YMn6Sn6 is ∼ 45 Ω−1 cm−1 and 300 Ω−1 cm−1 for σxy and σxz, respectively [24]. This is

very comparable in magnitude to the values we find in GdMn6Sn6, but with the reverse

anisotropy. The difference between these two compounds indicates that the Berry curvature

of RMn6Sn6 could be easily tuned by the rare-earth elements. Therefore, this suggests that

the RT6X6 system in general should be an excellent system to learn how to manipulate the

Berry curvature via the tuning knob provided by the localized magnetism on the rare-earth

site.

Acknowledgement This work was carried out under the auspices of the U.S. Depart-

ment of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering

Division. TA acknowledges support of the LANL Directors Postdoctoral Funding LDRD

program.

[1] J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida, Y. Takano,

A. Suslov, Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 98, 107204

(2007).

[2] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn,

6



Phys. Rev. Lett. 108, 045305 (2012).

[3] L. Balents, Nature 464, 199208 (2010).

[4] H. Chen, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 112, 017205 (2014).

[5] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62, R6065 (2000).

[6] E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106, 236802 (2011).

[7] W. Zhu, S.-S. Gong, T.-S. Zeng, L. Fu, and D. N. Sheng, Phys. Rev. Lett. 117, 096402 (2016).

[8] S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).

[9] T. Kida, L. A. Fenner, A. A. Dee, I. Terasaki, M. Hagiwara, and A. S. Wills, Journal of

Physics: Condensed Matter 23, 112205 (2011).

[10] L. Ye, M. Kang, J. Liu, F. Von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick,

E. Rotenberg, D. C. Bell, et al., Nature 555, 638 (2018).

[11] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar,
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FIG. 2. (a) Transverse resistivity of GdMn6Sn6 versus the applied field along the y-axis for

various temperatures. (b) Transverse conductivity versus the applied field along the y-axis for

various temperatures. (c) The anomalous Hall conductivity extracted at B = 0.2 T versus the

longitudinal conductivity using temperature as an implicit parameter. The dashed line in the limit

of zero conductivity provides an estimate of the intrinsic contribution as described in the text. The

same data versus temperature is shown in the inset. The error bars represent the standard error

of σAHExz data between B = 0.15 T and 0.2 T.
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FIG. 3. (a)-(c) Same as in Fig. 2 with field applied along the z-axis. For (b), the ordinary Hall

contribution is subtracted, as described in the main text.

10


